organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiu-Fang Cao, Guang-Ao Yu, Sheng-Hua Liu* and Xiang-Gao Meng

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: chshliu@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.052 wR factor = 0.135 Data-to-parameter ratio = 19.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(-)-*N*-[(3*S*)-3-(4-Fluorophenyl-4-methyl)hexanoyl]bornane-10,2-sultam

In the title compound, $C_{22}H_{30}FNO_3S$, molecules are linked *via* $C-H \cdots O$ interactions.

Received 17 July 2006 Accepted 1 August 2006

Comment

The readily available enantiomers of bornane-10,2-sultam serve as efficient, versatile and practical chiral auxiliaries (Oppolzer, 1990), and we have focused our attention on this field. In this paper, we present the X-ray crystallographic analysis of the title compound, (I).

In (I), the six-membered ring of sultam shows a boat form (Fig. 1). The C7/C6/C5/C4 and C4/C9/C8/C7 planes form a dihedral angle of 92.6 (3)°. The C4/C3/C7 plane forms dihedral angles to the aforementioned planes of 123.6 (1) and 125.8 (4)°, respectively. The molecules are linked *via* C–H···O interactions (Table 2).

Experimental

For the preapration of compound (I), *N*-[3-(4-fluorophenyl)propenoyl]bornane-10,2-sultam (2.908 g, 8.0 mmol) was reacted with *i*-PrMgCl (16.0 mmol) in anhydrous THF (60 ml) at 193 K (yield 2.184 g, 67%); $[\alpha]_D^{31} = -84.2^{\circ}$ (c 1.05, CHCl₃) (Huang *et al.*, 1999). Crystals appropriate for X-ray data collection were obtained by slow evaporation of a dichloromethane solution at 293 K.

Crystal data
Z = 4

 $C_{22}H_{30}FNO_3S$ Z = 4

 $M_r = 407.53$ $D_x = 1.282 \text{ Mg m}^{-3}$

Orthorhombic, $P2_12_12_1$ Mo K α radiation

a = 11.3245 (11) Å
 $\mu = 0.18 \text{ mm}^{-1}$

b = 12.7667 (12) Å
T = 292 (2) K

c = 14.6079 (14) Å
Block, colorless

V = 2112.0 (3) Å³
 $0.30 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: none 20597 measured reflections

© 2006 International Union of Crystallography All rights reserved

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0809P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	+ 0.1599 <i>P</i>]
$wR(F^2) = 0.135$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
5040 reflections	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
257 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983),
	1860 Friedel pairs
	Flack parameter: 0.00 (8)

Table 1

Selected geometric parameters (Å, $^\circ).$

C9-N1	1.475 (2)	C22-F1	1.360 (3)
C10-S1	1.789 (2)	N1-S1	1.6878 (16)
C11-O3	1.199 (3)	O1-S1	1.425 (2)
C11-N1	1.394 (3)	O2-S1	1.427 (2)
C4-C10-S1	106.61 (14)	N1-S1-C10	95.63 (10)
C4-C5-C6-C7	-4.3 (2)	C12-C13-C17-C18	-56.1 (2)
C7-C8-C9-C4	-9.9(2)	C4-C9-N1-S1	18.55 (18)
C10-C4-C9-N1	-30.1(2)	C9-N1-S1-C10	-1.72(16)
C9-C4-C10-S1	28.4 (2)	C4-C10-S1-N1	-15.94(19)
C11-C12-C13-C14	166.99 (18)		

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1-H1B\cdots N1$	0.96	2.58	3.226 (3)	125
$C12 - H12A \cdots O2$	0.97	2.43	3.158 (3)	131
$C10-H10A\cdots O3^{i}$	0.97	2.36	3.236 (3)	150
C8−H8A···O2 ⁱⁱ	0.97	2.60	3.458 (3)	148
$C6-H6A\cdots O2^{ii}$	0.97	2.56	3.477 (3)	157
			-	

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 2$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2$.

All H atoms were constrained to an ideal geometry with C–H distances of 0.93–0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$. The absolute configuration of (I) based on the Flack (1983) parameter is consistent with the known absolute configuration of (–)-2,10-sultam (Boiadjiev & Lightner, 2001).

The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 20572029) and the National Key Project for Basic Research of China (No. 2004CCA00100).

References

- Boiadjiev, S. E. & Lightner, D. A. (2001). *Tetrahedron Asymmetry*, **12**, 2551–2564.
- Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Huang, J.-X., Li, Y., Ma, X.-Q. & Zhou, Z.-Q. (1999). Chem. Res. Chin. Univ. 15, 23–28.
- Oppolzer, W. (1990). Pure Appl. Chem. 62, 1241-1250.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.